Quickstart: Add Memory to Existing Agent
Add durable memory to an existing agent loop in a few steps.
What You Will Build
- Retrieve relevant memory before model generation
- Write key outcomes back to memory after response
- Reuse memory in later turns and sessions
Prerequisites
PAPR_MEMORY_API_KEYconfigured in your environment- A stable
external_user_idfrom your application identity
Minimal Setup
- Add one retrieval call before generation.
- Add one writeback call after generation.
- Validate with a second retrieval query.
1) Retrieve Context Before Generation
curl -X POST "https://memory.papr.ai/v1/memory/search?max_memories=20&max_nodes=15&response_format=toon" \
-H "X-API-Key: $PAPR_MEMORY_API_KEY" \
-H "Content-Type: application/json" \
-H "X-Client-Type: curl" \
-d '{
"query": "What relevant context should I use for this request?",
"external_user_id": "user_123",
"enable_agentic_graph": true
}'2) Generate Your Agent Response
Use the retrieved context in your LLM prompt and run your existing inference step.
3) Store the New Learning
curl -X POST https://memory.papr.ai/v1/memory \
-H "X-API-Key: $PAPR_MEMORY_API_KEY" \
-H "Content-Type: application/json" \
-H "X-Client-Type: curl" \
-d '{
"content": "User confirmed they want weekly updates and concise summaries.",
"external_user_id": "user_123",
"metadata": {
"role": "assistant",
"category": "preference"
},
"memory_policy": {
"mode": "auto"
}
}'4) Validate in One Query
curl -X POST https://memory.papr.ai/v1/memory/search \
-H "X-API-Key: $PAPR_MEMORY_API_KEY" \
-H "Content-Type: application/json" \
-H "X-Client-Type: curl" \
-d '{
"query": "What summary and update preferences does this user have?",
"external_user_id": "user_123",
"enable_agentic_graph": true
}'Validation Checklist
- Retrieval returns context before generation.
- Writeback persists a new memory item.
- Validation query returns the new learning.
Troubleshooting
If validation returns no results, confirm you are using the same external_user_id on both write and search, then check Error Playbook.