Quickstart: Document Memory
Ingest documents and query them through memory search.
What You Will Build
- Upload a document for processing
- Track document processing status
- Retrieve relevant context through memory search
Prerequisites
PAPR_MEMORY_API_KEYconfigured in your environment- A local PDF or Word document available for upload
Minimal Setup
- Upload the document and save
upload_id. - Poll status until processing finishes.
- Search for one grounded answer.
1) Upload a Document
curl -X POST https://memory.papr.ai/v1/document \
-H "X-API-Key: $PAPR_MEMORY_API_KEY" \
-H "X-Client-Type: curl" \
-F "file=@contract.pdf" \
-F "external_user_id=user_123" \
-F "organization_id=org_demo"Save upload_id from the response.
2) Poll Processing Status
curl -X GET "https://memory.papr.ai/v1/document/status/$UPLOAD_ID" \
-H "X-API-Key: $PAPR_MEMORY_API_KEY" \
-H "X-Client-Type: curl"3) Search Document Memory
curl -X POST "https://memory.papr.ai/v1/memory/search?max_memories=20&max_nodes=15" \
-H "X-API-Key: $PAPR_MEMORY_API_KEY" \
-H "Content-Type: application/json" \
-H "X-Client-Type: curl" \
-d '{
"query": "What are termination clauses and notice periods in our latest contract?",
"external_user_id": "user_123",
"organization_id": "org_demo",
"enable_agentic_graph": true
}'Validation Checklist
- Upload returns a valid
upload_id. - Status endpoint reaches a completed state.
- Search returns memory tied to document content.
Troubleshooting
If search returns weak results, wait for processing completion and check Document Processing Guide.