CrewAI Integration
Use Papr as shared memory across CrewAI tasks so agents can reuse prior findings and maintain continuity.
What You Build
- Shared memory retrieval before task execution
- Post-task writeback of outcomes and learnings
- User and tenant scoped memory boundaries
Prerequisites
- Papr API key in
PAPR_MEMORY_API_KEY - CrewAI project with task lifecycle hooks
- Stable per-user identifier mapped to
external_user_id
Integration Pattern
- Search Papr with the task objective.
- Pass retrieved context to the active CrewAI agent.
- Write task outcomes back to Papr memory.
Minimal Setup
- Add pre-task retrieval to your crew execution flow.
- Add post-task writeback after task completion.
- Validate with repeated tasks for the same user scope.
Python Skeleton
import os
from papr_memory import Papr
client = Papr(x_api_key=os.environ.get("PAPR_MEMORY_API_KEY"))
def pre_task_context(task_prompt: str, actor_id: str):
return client.memory.search(
query=task_prompt,
external_user_id=actor_id,
enable_agentic_graph=True,
max_memories=20,
max_nodes=15,
)
def post_task_learning(outcome: str, actor_id: str):
return client.memory.add(
content=outcome,
external_user_id=actor_id,
metadata={"role": "assistant", "category": "learning"},
memory_policy={"mode": "auto"},
)Validation Checklist
- Task startup includes retrieved Papr context
- Task output is persisted and searchable
- Shared memory improves multi-step workflows
Troubleshooting
If outcomes are not reused, verify post-task writes and check scope fields using Error Playbook.